Probabilistic Demand Forecasting at Scale

نویسندگان

  • Joos-Hendrik Böse
  • Valentin Flunkert
  • Jan Gasthaus
  • Tim Januschowski
  • Dustin Lange
  • David Salinas
  • Sebastian Schelter
  • Matthias W. Seeger
  • Bernie Wang
چکیده

We present a platform built on large-scale, data-centric machine learning (ML) approaches, whose particular focus is demand forecasting in retail. At its core, this platform enables the training and application of probabilistic demand forecasting models, and provides convenient abstractions and support functionality for forecasting problems. The platform comprises of a complex end-to-end machine learning system built on Apache Spark, which includes data preprocessing, feature engineering, distributed learning, as well as evaluation, experimentation and ensembling. Furthermore, it meets the demands of a production system and scales to large catalogues containing millions of items. We describe the challenges of building such a platform and discuss our design decisions. We detail aspects on several levels of the system, such as a set of general distributed learning schemes, our machinery for ensembling predictions, and a high-level dataflow abstraction for modeling complex ML pipelines. To the best of our knowledge, we are not aware of prior work on real-world demand forecasting systems which rivals our approach in terms of scalability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical model for forecasting * and estimating of market demand

The scientific study article(a monograph) , presents a forecast and estimate the evolution of the market demand. Key-Words: fuzzy sets, forecasting, estimating, statistical extrapolation, market demand. 1 Problem formulation Methods for forecasting 1.1 Probabilistic Model [10] The methods operate with certain statistical parameters. The most frequently used is the mean square deviation, namely:...

متن کامل

Different Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...

متن کامل

DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Probabilistic forecasting, i.e. estimating the probability distribution of a time series’ future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic fore...

متن کامل

A Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting a Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting

This paper provides detailed information on Team Poland’s approach in the electricity price forecasting track of GEFCom2014. A new hybrid model is proposed, consisting of four major blocks: point forecasting, pre-filtering, quantile regression modeling and post-processing. This universal model structure enables independent development of a single block, without affecting performance of the rema...

متن کامل

Application of Discrete 3-level Nested Logit Model in Travel Demand Forecasting as an Alternative to Traditional 4-Step Model

This paper aims to introduce a new modelling approach that represents departure time, destination and travel mode choice under a unified framework. Through it, it is possible to overcome shortages of the traditional 4-step model associated with the lack of introducing actual travellers’ behaviours. This objective can be achieved through adopting discrete 3-level Nested Logit model that represen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017